A Diagnosis-Prognosis Feedback Loop for Improved Performance Under Uncertainties

نویسندگان

  • Patrick E. Leser
  • James E. Warner
چکیده

The feed-forward relationship between diagnosis and prognosis is the foundation of both aircraft structural health management and the digital twin concept. Measurements of structural response are obtained either in-situ with mounted sensor networks or offline using more traditional techniques (e.g., nondestructive evaluation). Diagnosis algorithms process this information to detect and quantify damage and then feed this data forward to a prognostic framework. A prognosis of the structure’s future operational readiness (e.g., remaining useful life or residual strength) is then made and is used to inform missioncritical decision-making. Years of research have been devoted to improving the elements of this process, but the process itself has not changed significantly. Here, a new approach is proposed in which prognosis information is not only fed forward for decision-making, but it is also fed back to the forthcoming diagnosis. In this way, diagnosis algorithms can take advantage of a priori information about the expected state of health, rather than operating in an uninformed condition. As a feasibility test, a diagnosis-prognosis feedback loop of this manner is demonstrated. The approach is applied to a numerical example in which fatigue crack growth is simulated in a simple aluminum alloy test specimen. A prognosis was derived from a set of diagnoses which provided feedback to a subsequent set of diagnoses. Improvements in accuracy and a reduction in uncertainty in the prognosisinformed diagnoses were observed when compared with an uninformed diagnostic approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Adaptive Fuzzy Sliding Mode Control of Permanent Magnet Stepper Motor with Unknown Parameters and Load Torque

In this paper, robust adaptive fuzzy sliding mode control is designed to control the Permanent Magnet (PM) stepper motor in the presence of model uncertainties and disturbances. In doing so, the nonlinear model is converted to canonical form, then, for designing the controller, the robust sliding mode control is designed to decrease the effects of uncertainties and disturbances. A class of fuzz...

متن کامل

Robust Controller Design Based on Sliding Mode Observer in The Presence of Uncertainties and Actuator Saturation

This paper studies the design of a robust output feedback controller subject to actuator saturation. For this purpose, a robust high-gain sliding mode observer is used to estimate the state variables. Moreover, the combination of Composite Nonlinear Feedback (CNF) and Integral Sliding Mode (ISM) controllers are used for robust output tracking. This controller consists of two parts, the CNF part...

متن کامل

A Robust Reliable Forward-reverse Supply Chain Network Design Model under Parameter and Disruption Uncertainties

Social responsibility is a key factor that could result in success and achieving great benefits for supply chains. Responsiveness and reliability are important social responsibility measures for consumers and all stakeholders that strategists and company managers should be concerned about them in long-term planning horizon. Although, presence of uncertainties as an intrinsic part of supply chai...

متن کامل

Geometric feedback control of discrete-deposition SFF systems

Purpose – New applications of solid freeform fabrication (SFF) are arising, such as functional rapid prototyping and in situ fabrication, which push SFF to its limits in terms of geometrical fidelity due to the applications’ inherent process uncertainties. Current closed-loop feedback control schemes monitor and manipulate SFF techniques at the process level, e.g. envelope temperature, feed rat...

متن کامل

Applying a CVaR Measure for a Stochastic Competitive Closed-Loop Supply Chain Network under Disruption

This paper addresses a closed-loop supply chain network design problem, in which two different supply chains compete on retail prices by defining a price-dependent demand function. So, the model is formulated in a bi-level stochastic form to demonstrate the Stackelberg competition and associated uncertainties more precisely. Moreover, it is capable of considering random disruptions in the leade...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016